Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3.

نویسندگان

  • Alison Berent-Spillson
  • Amanda M Robinson
  • David Golovoy
  • Barbara Slusher
  • Camilo Rojas
  • James W Russell
چکیده

Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The metabotropic glutamate receptor mGluR3 is critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats.

Group II metabotropic glutamate receptors (mGluRs) play an important role in the regulation of hippocampal synaptic plasticity in vivo: long-term potentiation (LTP) is inhibited and long-term depression (LTD) is enhanced by activation of these receptors. The contribution, in vivo, of the individual group II mGluR subtypes has not been characterized. We analysed the involvement of the subtype mG...

متن کامل

Endogenous N-acetylaspartylglutamate (NAAG) inhibits synaptic plasticity/transmission in the amygdala in a mouse inflammatory pain model

BACKGROUND The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is widely expressed throughout the vertebrate nervous system, including the pain processing neuraxis. Inhibitors of NAAG peptidases are analgesic in animal models of pain. However, the brain regions involved in NAAG's analgesic action have not been rigorously defined. Group II metabotropic glutamate receptors (mGluR2/3) pl...

متن کامل

GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism.

We tested the hypothesis that endogenous N-acetylaspartylglutamate (NAAG) presynaptically inhibits glutamate release at mossy fiber-CA3 synapses. For this purpose, we made use of 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), an inhibitor of glutamate carboxypeptidase II [GCP II; also known as N-acetylated alpha-linked acidic dipeptidase (NAALADase)], the enzyme that hydrolyzes NAAG into N-ace...

متن کامل

beta-NAAG rescues LTP from blockade by NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor.

N-Acetylaspartylglutamate (NAAG) is an agonist at the type 3 metabotropic glutamate receptor (mGluR3), which is coupled to a Gi/o protein. When activated, the mGluR3 receptor inhibits adenylyl cyclase and reduces the cAMP-mediated second-messenger cascade. Long-term potentiation (LTP) in the medial perforant path (MPP) of the hippocampal dentate gyrus requires increases in cAMP. The presence of...

متن کامل

Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration

Glutamate carboxypeptidase II (GCP-II) is a brain metallopeptidase that hydrolyzes the abundant neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to NAA and glutamate. Small molecule GCP-II inhibitors increase brain NAAG, which activates mGluR3, decreases glutamate, and provide therapeutic utility in a variety of preclinical models of neurodegenerative diseases wherein excess glutamate is presume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2004